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PREFACE

The following Technical Report is an adaptation of an M.S. thesis
submitted to The University of Tennessee in August 1982. It is the
result of an effort to go beyond the usual interpretation of a
diffraction field and to interpret simultaneously the effects of linear
diffraction and nonparallelism in terms of pulse echo amplitudes
observed on an oscilloscope. It is a necessary first step toward a
more general interpretation which includes the nonlinearity of the
solid propagating medium.

Even in the linear approximation the evaluation of the amplitudes,
and hence the attenuation, of pulsed ultrasonic waves in solids can be
complicated by a number of factors. Of those factors most often
considered, this report concentrates on extending our understanding of
diffraction and nonparallelism. A mathematical model for correcting
the echo height for the effect of a wedge-shaped sample is constructed.
By using a unique coordinate system, the path of a multiply-reflected
ultrasonic wave is transformed into an equivalent unidirectional path.

A diffraction correction ther is applied by numerically integrating

an improved version of the farfield solution to the diffraction

integral. This model is used to interpret data taken on a steel plate
which has different facets ground over a range of angles between 0 and
0.01175 radians. Plots are given of corrected attenuation measurements
made with circular pfezoelectric transducers having resonance frequencies

between 3 and 7 MHz.
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A comparison is made between the present model and that of
Truell and Oates [J. Acoust. Soc. Am. 35, 1382 (1963)], which was
intended as an indicator of the necessity for applying a correction
for nonparallelism. The present model corrects the first four echoes
for frequencies f < 6 MHz and angles y < 4 x 10-3 radians.
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following organizations:

The Canadian Armed Forces for their financial and administrative
support;

The United States Office of Naval Research for providing the
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The author also wishes to express his appreciation to a few
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CHAPTER 1
INTRODUCTION

The attenuation of ultrasonic waves is a physical phenomenon
which has great significance in many wave propagation studies. Much
useful information about the internal structure of the propagating
medium can be derived from a correct interpretation of attenuation.

The correct interpretation of attenuation, however, is a long-standing
problem. The usual approach to solution of this problem is to assume
that the physical phenomena which produce attenuation make independent
contributions to the measured result. One then characterizes the
measured attenuation coefficient as a summation of coefficients result-
ing from (1) intrinsic attenuation (that resulting from viscous and
thermal losses in the propagating medium as well as grain boundary
scattering); (2) attenuation resulting from diffraction; and (3) attenua-
tion resulting from a lack of parallelism between the ultrasonic source
and the receiver. This thesis is an attempt not only to point out that
(2) and (3) are not truly independent, but also to demonstrate how they
can be interpreted simultaneously.

In his Theory of Sound first published in 1878, Lord Rayleigh

(1950) gave the mathematical form of the diffraction integral. In

1886 Lommel published a solution of the same diffraction integral as
applied to the propagation of 1ight by utilizing the Kirchhoff approxi-
mation for Fresnel diffraction. The solution, given in the form of an

infinite sum of Bessel functions, is awkward to use (Gray and
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Matthews (1931)). Huntington et al. (1948) published the first
diffraction correction for propagation of ultrasonic waves by making a
numerical integration of the tabulated data of Lommel. Numerous
authors subsequently have provided improvements of the numerical inte-
gration process, the latest having been published by Benson and
Kiyohara (1974). Rogers and Van Buren (1974) obtained an analytical
solution of Lonmel’'s diffraction integral. Their solution is applicable
to the transmission of sound Letween two discs of the same size which
are parallel to each other. However, the analytical solution has
Timited utility in the present situation because it gives the result
of integrating over a receiver area rather than the value of pressure
at a single point in the diffraction field.

A11 the above models assume that the propagation medium is a
lossless liquid. Papadakis (1975) studied the propagation of ultra-
sonic waves in a solid and states: "The solution for fluids applies
adequately to isotropic solids as long as the transducer is bonded
adequately to one of a pair of plane parallel faces of a slab consider-
ably larger in lateral extent than the transducer diameter" (p. 154).

In all these studies the receiver and the source conveniently were
assumed to be parallel. It has been known for some time that measure-
ments of ultrasonic attenuation are seriously affected by nonparallelism
of the source and the receiver. In their review article Breazeale et al.
(1981) state "among the less easily evaluated errors are those arising
from . . . phase cancellation resulting from lack of parallelism of the

transducers, from material inhomogeneity, and from diffraction" (p. 68).
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Truell and Oates (1963) studied the effect of nonparallelism of source
and receiver. Their study showed that the diffraction pattern observed
in a sample of wedge angle y was modulated after n reflections by a
function of the form ZJ]((Zka ny)/2ka ny). They then gave a mathematical
treatment to explain this modulation phenomenon on the basis of phase
cancellation of infinite plane waves. Truell et al. (1969) suggested
that the form of the function could be used as a means of predicting the
degree of parallelism required for a given value of ka to avoid the
modulation effect. They also showed that the model’'s ability to predict
the shape of the modulation was much better at high frequency (85 MHz)
than at low frequency (35 MHz). Calder (1978) introduced a modification
to the Truell and Qates model by correcting for the inhomogeneity of

the sample. He applied his correction to a wedged sample and to a
hemispherical reflector. In his case the Truell and Qates model
significantly corrected for the modulation in the case of the hemi-
spherical reflection; however, it was not able to correct for the
modulation observed with the wedged sample.

In this thesis the Truell and Oates model is shown to be
inappropriate for the frequency range 3 to 9 MHz in wedged steel samples.
Next, the Truell and Oates model is modified by the removal of the
plane wave approximation. This procedure makes it necessary to define
the pressure at a point in the diffraction field. Then, the point
values of the pressure are numerically integrated over the receiver
area. Such an integration can be performed only after a definition

of the relative position of the receiver and the displaced and rotated
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wave field has been made. An inherent characteristic of this procedure
is the lack of separability of the effects of diffraction and non-
parallelism of the sample surfaces. The result is an improved model

which is able to account for a number of experimental observations.

i ) L



CHAPTER II

THEORETICAL ANALYSIS

A. WAVE PROPAGATION THEORY

1. Wave Attenuation

a. Definition of a, the attenuation parameter. If a pressure
Jot

disturbance of the form P(t) = Poe propagates a distance ax from a

point Xy to a point x, then the pressure measured at the point x will

be of the form:
P(x,t) = poed (0E-kEX) (2-1)

An expression for an attenuated wave is obtained by assuming that

k = ko - j“ (2‘2)

where a is the attenuation coefficient which is assumed to be constant.

Equation (2-1) then becomes

j(wt-koAx)

P(x,t) = [e™®*] pge (2-3)

The bracketed term expresses the manner in which the attenuation

coefficient a affects the ampiitude values. 1f we now take the modulus

of Eq. (2-3), we obtain Lo

i
i
I
I
|
|
l
l
l
|
[ the wave vector k is complex and given by:
|
I
|
[
|
I
i
!
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Pmax(x) = POQ-GAX . (2-4)

From Eq. (2-4), then, o can be expressed as

P )
a=-31;1n["'°3‘—-,3(1—] (2-5)

or equivalently as

P
o= %2_ 109]0 [or—(ﬂJ . (2-6)
The unit of o in this case is db per unit of length of aAx,

b. The attenuation correction. If one wants to correct for

attenuation, he must first examine the physical causes of this
phenomenon. In general, the causes of attenuation are divided into two
categories: the intrinsic attenuation phenomena a4 and the geometric

attenuation phenomena o These two categories are assumed to be

g’
independent of each other such that we can express a as:

a=ay;+ ag - (2-7)

The intrinsic attenuation oy is a measure of the loss of energy
of the pressure wave. In a solid which is reacting as a continuum most
of the intrinsic attenuation measured comes from the phase delay between
the density function and the pressure function. Therefore, in a given

homogeneous isotropic medium the total intrinsic attenuation a4

——— .




experienced by a wave propagating at a frequency fo can be expressed,
at least in the linear approximation, as a constant ay. Then to obtain
a value of intrinsic attenuation one can first correct a measured
pressure value for geometrical attenuation and use this corrected
pressure in Eq. (2-6).
f The geometrical attenuation phenomenon is the one that will be
studied in greater detail as it is significantly affected by many
geometrical factors such as parallelism of the faces of the solid and
diffraction which have been adjusted during the course of this

investigation,

2. The Diffraction Theory

1
| a. The diffraction model. We will assume that a source of '

pressure disturbance behaves as a circular piston in an infinite rigid
baffle. Then the magnitude of the disturbance at any point on the
source can be described either in terms of maximum pressure P0 or

maximum velocity U0 as:
. P(t) = pgelut (2-8)

B(t) = jugedet (2-9)

o |

.~

where w is the angular frequency of the disturbance. If this

disturbance is now allowed to propagate into a lossless homogeneous

jsotropic fluid, its radiation pattern can be described by the use of
classical wave theory. Using Huygens' principle we then approximate

the piston by subdividing the area into small point sources and use the

R G e ey
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additivity theorem to obtain the resulting effect of all these small
sources at a field point.
Kinsler et al. (1982) give the radiation pattern of a small source

(of any shape)] which is located in an infinite baffle as:

CU-K
dP(R,t) = %0 [p—"?"l ds-[j e (“’""‘R)]] (2-10)

where
R is the distance from the center of the source to the field
point;
o is the medium density;
C is the velocity of propagation of the pulsation through the
medium;
U0 is the maximum velocity of the surface;
k is the wave vector;
dP is the pressure value; and
dS” is the pulsating surface.
The pressure at a field point, defined by the spherical coordinate
(Ro,e) shown in Figure II-1, is given by the integration of £q. (2-10)

over S°,the source surface. One then obtains the diffraction integral:

§ on CU §{wt-kR)
P(Rg,6,t) = _f.gﬂ 0 fs' e wr ds- . (2-11)

,Appendix A shows why for small sources the shape does no‘ make
any difference to the radfation pattern.

PR .
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Figure 11-1. Geometry Used in Deriving the Radiation
Characteristics of a Piston Source.
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This integral also is referred to as Rayleigh's integral and it does not
have a closed form solution. However, a number of numerical integrations
of this integral have been made and the result of one of them is shown

in Figure II-2.

b. The pressure on the axis. The pressure in the field along

the Z axis is one of the few quantities which can be analytically
obtained from the piston model without further approximation. From

Eq. (2-11):

. 2. 2,12
i pp CUgk 5(ut) r g-Jk(r™+z%)
™

P(2,0,t) = 2nrdr (2-12)
0 Zs vz
since:
2,2
ot k(B AR g gIkZ) (2-13)
(2% + r%) dr Jk
Then we obtain
2,.2\1/2
P(2,0,t) = o CUg utredkz _ o=Jk(z°4a%) 777 . (2-18)

The magnitude of this expression is the pressure on the axis Paxis:

Paris ™ 29 CUglsinty kzL(1 + (a/2)8)1/2 - 1]y . (2-15)

axis

wWhen the value of z/a 1s much larger than ka, then P simplifies to

axis
h which is the spherically diverging wave

an asymptotic expression Psp

expected at large distances:

R




N

’ Figure 1I-2. The Shape of the Normalized Values of Pressure in
a Plane Normal to the Direction of Propagation (from Mercier (1976)).
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psph 55 CUp ka (2-16)
P t-k
Psph(z,t) = Eg Cu, kal o lut-kz) (2-17)

A comparison of the values of P obtained for Eqs. (2-15) and (2-17),
shown in Figure II-3, shows that Psph does not converge to within 10%

of P until a distance of twice the farfield distance Ze is achieved.

axis
The parameter Ze is defined as the axial distance to the last maximum

of the axial pressure and is given by Krautkramer (1977) as:

2. = (422 + 22)/a1 (2-18)

where a is the radius of the source element and X is the wavelength of

the wave.

c. The pressure in the farfield. An analytical form of the

diffraction integral can be obtained by noting that for R0 >> a the
value of R is adequately approximated by: (1) R0 in the denominator
and (2) by Ro - r sinscosy in the more sensitive phase term. Then

Eq. (2-11) can be integrated to give:

P(Ro.e.t) = —ZRO—- a e 2 sing (2-]9)
Then from Eq. (2-16)
Zdl(ka sine) j(mt-kRo)
P(Ro,e,t) = Psph(RO) —m— e (2-20)

. e —
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Krautkramer (1977)).
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Comparison of Pressure on Axis for P, = 1 (from
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where the spherical dependence P (Ro,t) is expressed by Eq. (2-11)

sph
when Z, the axial distance, is equal to Ro. The remaining term includes
all the angle dependence and is commonly referred to as the directivity
function. A plot of [2J1(ka sine)/(ka sine)] is shown in Figure II-4. It
is important to note that in the farfield the angle 6 gives the approxi-
mate direction of propagation of the wave on the wavefront, i.e., along
the radius R0 and that the function H(ei) becomes much more sensitive

to variations of 8; as the value of the parameter ka is increased. The

polar diagram obtained from Krautkramer (1977) and included in

Figure II-5 clearly shows this relationship.

d. Average pressure on the receiver. In a pulse echo system

one can obtain the average pressure on the receiver by integrating
Eq. (2-11) over the receiver area. Rogers and Van Buren (1974) have

1

solved analytically this protlem using the Fresnel diffraction

approximation and obtained a diffraction correction parameter D given

by:
p =1 - e 3BS)y (2n/5) + § 9 (2n/5)] (2-21)

where S = 2nZ/ka2 is the normalized propagation distance.

]In the Fresnel approxima%ion ope replaces R in Eq. (2-11) by 2
in the denominator and by Z + (ré + r°¢ - 2rr°cos ¥°)/2Z where the

?rime)c?ordinates are the source coordinates. (See Gray and Mathews
1931).
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2J1(ka sine)
ka sing

L1 ]

Figure II-4. Functional Behavicer of 2J
Kinsler et al. (1982)).

31415 16
ka sin®

l(ka sing)/ka sine (from
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(a) For ka = 50 (f = 3.6 MHz, a = 1.27 cm; in steel) 100%
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(b) For ka = 12,5 (f = 7.2 MHz, a = 0.635 cm; in steel)

))Figure 11-5. Directional Characteristic H(e) (from Krautkramer
(1977)).
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B. GEOMETRICAL CORRECTION MODELS

1. The Plane Wave Correction Model

As will be shown in the results, significant deviations from the
diffraction model are observed in the echo train of a wedged sample.
Truell and Oates (1963) suggested a model to explain the deviation from
the diffraction pattern based on the geometry of wedged samples. This

model will be described here.

a. The geometry of propagation in a wedged sample. Let us

assume that a sinusoidal disturbance of frequency f0 originating at a
time t0 and having radial symmetry about an origin 0, begins propagating
along the normal to the upper surface of a wedge of angle y as shown in
Figure II-6. At any time t > t0 the center of symmetry of this disturb-
ance is located along the axis of propagation of this wave; i.e., at the
center of the wavefront. Now, consider the displacement of the center
of the wavefront of the disturbance as the wave is multiply reflected
within the sample. This displacement occurs along a path described by

a ray folded by reflection between the faces of the wedge. At every
reflection from the lower face the relative angle Yn between the upper
surface and the normal to the propagation direction of the wave is
increased by 2y. After n reflections from the lower surface, the
relative angle \ is given by:

Y * 2ny. (2-22)

Furthermore, it is evident that as the wave propagates its symmetry

axis Z will wander away from the receiver origin 0.
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b. The theory of Truell and Oates. Truell and Oates (1963)

gave a theoretical model to explain the rapid fluctuation of amplitude
observed in the echo train of a circular piezoelectric receiver when a
wedged sample is used. They assumed that the wavefront was effectively
plane and that the fluctuations in pulse height could be accounted for
by the variations in the receiver signal that resulted from phase
cancellation of the wavefronts across the receiving transducer.
Assuming the effective translation of the receiver is negligible, then
the pressure function at a point (Ro,e,t) after n reflections from the

lower surface of the wedge can be expressed as:

j{wt-k[ZnL-xsinyn]
P(Ro,e’t)n =@ . (2-23)

This expression must be integrated over the circular receiver to obtain

the average pressure (B)n:

jwt ra -jk(2nL-xsiny )
EE:T.J Z(a2 - x?')]/2 e "n dx . (2-24)
ma -a

(P),, =
The result of this integration gives:
(P), = sin(wt - 2knL) H(y,) (2-25)

where
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2J][ka sinyn]
Hlve) = sy - (2-26)

The form of this function is given by the magnitude of the directivity
function defined in Eq. (2-20).

¢c. The average pressure on the receiver. In the Truell and

Oates model, the function obtained in Eq. (2-25) is assumed to modulate
the exponential diffraction pattern such that both effects can be
corrected for separately. The expression of the average amplitude on
the receiver is then given by the multiplication of the diffraction
correction parameter D given by Eq. (2-22) and H(yn). Therefore, the

magnitude of the average pressure P is given by: \
|P| = DH(v,) . (2-27)

The range of |5l may go from 0 to 1 and conversely the geometrical

attenuation according to the plane wave model goes from -= to 0.

2. The Diffracted Wave Model

As will be seen in the Results section, the plane wave model
which assumes independence of the diffraction and wedge geometry
correction does not satisfactorily describe the echo train observed.

A new approach combining both the diffraction theory and the description
of the phase cancellation will be developed for the wedge sample

l geometry. \
i
}
!
o
4
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a. Model of the physical situation. If one examines the '
diffraction model given in Eq. (2-11) and depicted by Figure II-2 ;
J (p. 11), one realizes that assuming a plane wave with a constant
pressure distribution is a very crude approximation of the physical
situation. Furthermore, this description is made in relation to a
; fixed propagation axis. However, as is obvious from Figure I1I1-6, the

propagation axis is rotated and translated in relation to the source/
| receiver element as the wave is multiply reflected in the sample. An
example of an analogous situation for a unidirectional propagation path
is shown schematically in Figure II-7. Using this physical model we
will define the average pressure resulting on the receiver when the
propagation distance is larger than the nearfield distance. First, a
modification of the farfield approximation will be done to improve its
convergence. Second, a coordinate transformation system will be
defined such that the unidirectional diffraction theory can be applied

to the propagation in a wedge sample. Third, an average pressure will

be obtained by numerical integration of the pressure function over the

.
| receiver area.

l' b. Modification of the solution of the diffraction integral in
the farfield. A study of the convergence of the farfield approximation,

[ given in Eq. (2-20), to a numerical approximation of the diffraction

integral was made by Rose (1975). He concluded that the directivity

function (ZJ](u)/u) seemed to converge much more rapidly to the shape

of the numerical values than the value of Psph to the value of pressure

axis” In order to obtain a more rapid convergence of the .

on axis P
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solution, the value of P h in Eq. (2-20) is replaced by the value of

Sp

P from Eq. (2-15). The new equation for the pressure is then:

axis

(wt-kRo)

P(Ro.a,t) = P (Ro)[ZJ](kasine)/(kasine)]ej (2-28)

axis

A numerical integration of this integral was done over a receiver
of 1.27 cm radius using the IMSL function DBLINT which is a cautious
Romberg quadratic numerical integration process. This result is com-
pared with the closed form analytical expression of the diffraction
integral given by Eq. (2-22). Figure I11-8 shows the value of Eq. (2-28)
as a means of improving the convergence of the expression of the
pressure in the farfield.

The normalized plot of average pressure shown in Figure II-8 is
then used to extend the validity of the numerical integration of
Eq. (2-28) to points having a propagation distance smaller than three
times Zf. A correction is then applied to all the average pressure P
subsequently obtained by integrating this equation over the receiver
surface. The correction is applied by multiplying the average pressure
by the ratio of the average pressure obtained from Rogers and Van Buren's
solution to the average pressure obtained by integrating €Eq. (2-28) for
a piezoelectric element of 1.27 cm radius at 4 MHz. This radio was
verified to be the same to within less than 1% whether the radius is
0.635 cm or 1.27 cm or the fregquency 2, 4, 6, or 8 MHz.

c. The coordinate transformations.

The new coordinate system. To define a new coordinate system

it will be necessary to define an imaginary source of origin 06 located

S e e [ P T e Med s ey et aat ——— Rt st ot = A
;---------------==n===================Ili=iii=llﬁki
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2.2’- O Analytical Solution (Eq. 2-21)
O Farfield Solution (Eq. 2-20)
21k e Modified Farfield Solution (Eq. 2-28)
4
2.0
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\ /
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\
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Figure II-8, Inverse of the Average Pressure on the Receiver as a
Function of tiormalized Propagation Distance.
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along the axis of symmetry Zﬁ of the wave such that an equivalent
unidirectional path can be associated with the wave. In this system
the axis Z; is defined to be coincident with the axis of symmetry and
the direction of propagation of the wave after n reflections from the
lower face. From symmetry consideration it will then be mathematically
simpler to use a cylindrical coordinate system described by the three

orthogonal axes Pns ops and Zﬁ.

Position of the imaginary source origin 05. The radial
coordinate [p‘(O,O)]n of the center 0 of the receiving element is
obtained by considering the right triangle, formed by the intercept of
the Z axis, the Zﬁ axis and the distance [p‘(0,0)]n, in Figure 1I-9.
The angle between the normal to the surface and the axis Za is defined
by Eq. (2-22) as Y, Its opposite angle, defined by the axes Z and Z-,

must also be n since Z is normal to the surface. Then we have
[0°(0,0)], = n L siny, , (2-29)

where L is the sample length measured at the center of the receiver.
The angle, defined by the distance [o‘(0,0)]n, and the surface must be
equatl to Yn since its two sides are respectively perpendicular to the
normal to the surface and to the z axis. Then its bisectrix will cut

the Z_ axis at a point [z Consider now the triangle formed by

ﬁar]n'
the bisectrix, the Z and the Zﬁ axis. In this triangle the angle A

opposite to the Zﬁ axis side is given by

A=a/2-v/2. (2-30)

- e e el
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Figure II-9.

Geometrical Relationship Existing for n = 1,

S PV B TR TR

R s B S T -~ aaey st E e S

— i




2. e 0 % AP eI T A R - u L LI ORDag

27

Since the angle ﬁ opposed to the bisectrix has been defined previously
as Yp» then the angle E opposite to the Z axis is given by:

C=n-B-A (2-31)

or

C=rn- Yo = (82 -y /2) = n/2 - y /2 . (2-32)

Since c equals ﬁ, then their sides are equal and since the Z axis side

is equal to n x L, then the Zﬁ axis side is also equal to n x L. This

means that the propagation path of the wave from 0 to [Z';ar]n is given
by:
[Zﬁar]n =pxL+nxlL=2nlL. (2-33)

The magnitude of tzﬁar]n is the propagation distance of a wave between

parallel faces after n reflections from the lower surface.

Now Tet us consider the right triangle formed by the distance

[»°(0,0)],. the bisectrix and the Z, axis. The Z. axis side which we

will call aZ-, is given by:
Al” = [p‘(O,O)]n tan(yn/Z) . (2-34)
The propagation path from 0 to [Z(O,O)]n is given by:
(z-(0,0)], = [Zﬁar]n - a2 . (2-35) .

Then by combining (2-33), (2-34), and (2-35), we obtain the [Z°(0,0)], i

coordinate as:
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[Z’(O,O)]n =nxl [2- sin(yn) tan(yn/Z)] . (2-36)

The relative positions of the imaginary source origin Oﬁ and the
receiver origin 0 are now defined by Eqs. (2-29) and (2-36). This
geometrical relationship which has been shown to be exact for the first
reflection is assumed to be exact for n reflections. It has been
verified graphically to be exact for at least four reflections for
different anales y ranging from 1° to 5°. An example of such graphical
construction is shown in Figure 1I-10.

Cylindrical coordinate of a point on the receiver surface.

Consider the projection of the upper surface in the pﬁ Zﬁ plane cut
along the X axis as shown in Figure II-11. The X axis, the parallel to
the o, axis passing by the poing (0,0} and the parallel to the Z; axis
passing by the point (x,0) form a right triangle of respective side x,
Xcosy, and xsinyn. Then the intercept on the ZE axis of the point

(x,0) is given by
[Z’(X,O)]n = [Z’(0,0)]n - xsinyn . (2-37)

The points (x,y) ané (x,0) must have the same Zﬁ value since y

is antiparallel to ¢ﬁ. Therefore, £q. (2-37) can be rewritien as:
[Z°(x.y)], = [27(0,0)],, - xsiny, . (2-38)
The intercept of the point (x,0) on the °n axis is similarly given by:

[p°(x,0)] = [p-(0,0}], + xcosy, .




S

Xz
le
c—————r—- ol - T
'
|
'
]
'
L}
t
1
~
~
]
oy ( ///
Nw ! ~
-~ - /’
' ~
' SN
1 ~
' 18 R
-l \'«ﬂ‘ e J
] | I/ ]
~ ]
Y
& .~ ~ “ SN2 '
N e ~J " N |
o~ »n S 1
> ~. ! [y So
o "Ic'llll.'ﬂl.ll"'ﬂ"’l'-"ﬂ"l‘}” llllll - NN
it - ~
I”.‘ ,, ~
e i >~ ~
I 10 e ~
i ~ ~
. ~
| | ! T ~a S
[} ~N e ~
| . | ! S~al
v
I ! )
* ! /
> ‘ /
C— !
e !
/
YV
a

Graphical Construction Showing the Geometrical

Relations after Three Reflections.

Figure II-10.

- AN QI G I G WS Shae O wamw  Sasd WY wew e ew o wmew mm ER OB

-

B IR T L

A ctm——— 4




30

200,01 T
Az
-------- [0-(0,0) .
\ \ o700, (2" (xy)],
A\A \\ -
-y -\ [o"(x,0)], ———t
\ A~
\ X
\~
o; - n
\\
RN
*n

Figure II-11.
the °826 Plane.

Definition of the Receiver Coordinate (x,y) in



N

Let us now consider the °n %n plane cut along the parallel to the y axis
formed by the point (x,0) and (x,y) as shown in Figure II-12. In the
right triangle formed by the three points (x,0), (x,y), and [O,Z‘(x,y)]n.
the distance between the last two points is [p‘(x,y)]n and is given by:

[o-(x:9)],, = [[o~(x,0)12 + y?11/2 (2-39)

We can now convert x and y in terms of r and ¥ by noting

that

rcosv, (2-40)

x
]

r siny. (2-41)

«<
"

This means that we can define the diffraction field parameters Ro,e in
terms of r and ¢ by using the following identities:
(Ry) = {lo~(r) 1% + [2°(r,)10)1/2 , (2-42)

(6). = tan") fo"(r. )], ' (2.43)
] T :

d. The average pressure on the receiver. From the modified

expression of the pressure P at a point in the field expressed by
Eq. (2-28) and the relationship between Rg» © and (p‘,Z‘)n defined by
Eas. (2-42) and (2-43), we can express the pressure at a point (p',Z‘)n

as:
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P(O’tz‘»t)n = Paxis

3ut-kRo(p",27), )
e .

(Rglp~s27) )20 (kasine (o-,27), ) /kasine (p”,27) ]

(2-44)

By using Eqs. (2-38)-(2-42) we obtain p~ and z“ as a function of r and

v, the receiver coordinates. The average pressure ﬁn(t) is obtained by

integrating Eq. (2-44) over the circular receiver area of radius a.

This gives:

jlat-kRy(rs)]

-

"#"“ﬁzﬁﬂ J

a
Plr,
o0 IPLr.yl|, e

r=0

rdr dy .

(2-45)

Since in the attenuation study we measure the maximum pressure, we need

the magnitude of Eq. (2-45). Using the identity

eI® = coso + j sine ,

Eq. (2-46) becomes

. ) 27 ra
P (t) = __E.Io IOIP[r,w]ln{cos[mt - kRy(r,v)]

na

+ j sinfwt - kRo(r,w)]}r dr dv .

Since we need only the real part, then

27 ra
Pn(t) = ——?-JO JOIP[r,w]lncos[wt - kRo(r,w)]r dr dy .

(2-46)

(2-47)

(2-48)
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Since cos(A-B) is equal to cosA cosB + sinA sinB, then

- 2n (a
Po(t) = g tcosut [ * [ IPLr.]l coskRy(robr dr oo
na 0 /0
2t ra
+ sinut I IOIP[r.w]lnsinkRo(r,w)r dr dv} . (2-49)
0

These two integrals can now bhe evaluated numerically such that

Eq. (2-49) becomes

5n(t) = (waz)’1{c05wt £+ sinut f,} . (2-50)
The magnitude of 5n(t)lis given by

Pl = [na?17" x [7,2 + £,221/2 . (2-51)

According to the diffracted wave model, the parameter lﬁln then
represents the maximum average pressure impinging on a circular trans-
mitter/receiver when a pressure wave subjected only to geometrical
attenuation and of a magnitude of 1 is reflected n times from the lower
face of a wedged sample. The range of lﬁln goes from 1 to O and the
corresponding range of.ag (the attenuation due to geometrical attenua-

tion) goes from 0 to -w.

3. The Correction for Geometrical Attenuation

An amplitude correction factor (CG)n is defined as the ratio of
the magnitude of the average pressure felt on a receiver of radius a

when (1) an infinite plane wave is impinging normally on its surface

[ 4 & “ i oo s el S R v PR RO T " SNer Npghea s b ¢
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(5 = 1) to (2) the situation described by either Eq. (2-51) or
(2-27).

(ce), = If’]l i (2-52)
n

Then after n reflections from the lower face of a wedge the magnitude
of a measured average pressure lPln can be corrected for geometrical

effects to obtain a corrected average pressure chln.

1Pl = IPl, x IcGl, . (2-53)

el

Equivalently, |P is the magnitude of an infinite plane wave

cIn
propagating normally to the receiver. The pressure P(t) in such a wave

is given by:

j(“’t‘kRo(oso)n)

P(t) = [P |, e (2-54)

where RO(O,O)n is the distance from the center of the imaginary source
0, to the center of the receiver (0,0).

The geometrical attenuation correction process described in this
section is coded in FORTRAN 10 language and included in Appendix B.
The program calculates the attenuation between the first and the nth
corrected echo of a given pulse echo setup specified by: (1) the
velocity V of the ultrasonic wave in the sample, (Z)che source radius
a, (3) the frequency of the piezoelectric crystal f, (4) the non-
parallelism angle v, (5) the sample length L, and (6) the relative
amplitude of the voltage from the piezoelectric crystal after n

reflections A(n).
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CHAPTER 111
EXPERIMENTAL APPARATUS AND PROCEDURE
A. PURPOSE AND BACKGROUND

The purpose of this investigation is to gain insight into the
propagation of ultrasonic waves in a wedged sample. Preparatory efforts
were concentrated in three areas: sample definition and characteriza-
tion; design of electronic setup for transmission and reception of
electrical signal; design of a transducer for coupling of ultrasonic

waves and electrical signal.

B. EXPERIMENTAL APPARATUS

1. Electronic Components

a. System description. The block diagram of the electronic

system is shown in Figure III.1. A variable frequency oscillator (VFO)
is used to generate an RF signal of a given frequency. This signal is
then fed into a frequency counter and a gated pulsed amplifier. The
pulsed amplifier sends out amplified pulses of this RF signal, at a
specified pulse repetition frequency (PRF), to the diode expander. The
diode expander eliminates undesirable low amplitude secondary pulses by
the use of Zener diodes. The signal is then fed into a decoupler
limiter. This decoupler sends the signal to the receiver and to the
transducer and limits the amplitude of the signal fed to the receiver

to avoid saturation of the receiver amplifier. The transducer

36 )
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transforms these single frequency pulses into longitudinal pressure

waves of ultrasonic frequency corresponding to the frequency sent by

the VFO. As the wave propagates, an echo is eventually reflected back
onto the transducer where the piezoelectric element transforms this
pressure wave back into an electrical output having the frequency of the
original signal, but of much lower amplitude. This echo is then retrans-
mitted by the decoupler limiter to the receiver. The receiver contains

a wide band (1 to 90 MHz) amplifier which can amplify received RF signals
by up to 20 decibels. This signal is then rectified and can be amplified
by up to 70 decibels by the second stage of this receiver. The rectified

and amplified transducer response is then fed into the boxcar integrator

C e e e ——
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and displayed on the oscilloscope. The position of that gate relative

to the signal indicates the part of the signal that is averaged out and

measured by the boxcar integrator. The synchronization of the pulser-
receiver-boxcar integrator system is ensured by triggering all these
elements from the pulser internal trigger. The oscilloscope is then

triggered from the boxcar delayed trigger output.

b. System discussion. Pulse operation was selected over

continuous wave for its superior immunity to cross-talk interference.
Pulse-echo was selected over through transmission to minimize system
alignment error. The need for accurate frequency measurements and
short pulse length suggested the use of a VFO coupled to a gated
amplifier rather than an integrated oscillator-pulser-receiver unit.
As mentioned by Truell et al. (1969), this type of setup allows for

excellent sensitivity to change in amplitudes for all values of
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attenuation. A limiter is built into the receiver input; however, to
avoid partial saturation of the receiver amplifier it is still necessary
to use an external decoupler limiter. A diode expander is used to
eliminate pulses of Tow Tevel energy which appear immediately after the
collapse of the main RF pulses] and last long enough to affect the

first two returning echoes. Terminators of 939 impedance are used to

provide impedance matching between the pulser and the transducer.
2. Transducer

a. Structure. A quartz, x-cut, crystal is used as a
piezoelectric element for the generation and reception of the ultrasonic
wave. As discussed in Krautkramer (1969), one of the chief advantages
of quartz crystal over ceramic crystals such as barium titanate or
1ithium niobate is its mechanical strength which was necessary to allow
for pressure application of the crystal on the sample. This pressure
is applied by the use of a vise pressing on both the sample lower face
and the transducer brass housing at the same time, as can be seen in
Figure 1I11.2. A photograph of the transducer parts is also shown in
Figure I11.3. The transducer parts were originally designed to be used

with different types of fmmersion transducers [see Scott (1975)]. The

main brass housing is maintained by the vise on a lucite crystal housing.

This crystal housing is of the form of a ring with the upper side flat

against the brass housing and a depression on the lower side. This

1This effect is generally caused by accumulation of low level
piezoelectric energy in the ceramic capacitor of the oscillator circuit,
which is coupled to the load after the collapse of the RF pulse.
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Figure 1I1-2. Ultrasonic Measurement Setup Showing the Steel
Plate, the Transducer, and the Vise.
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Figure III1-3. Transducer Parts. Top row, left to right: Tucite
crystal housing ring, lucite cylinder housing, contact spring, contact
cylinder. Bottom row: main brass housing.
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depression has an inside radius 1 mm smaller than the crystal radius and
an outside radius of about the size of the crystal so that the crystal
can be inserted in this depression. Since the depth of this depression
is smaller than the thickness of the crystal, the pressure applied on
the housing is uniformly distributed on a 1 mm ring at the rim] of the
crystal. It was necessary to use pressure and wring the crystal on the
surface for two main reasons. First, it was a simple yet efficient way
to ensure parallelism between crystal and sample faces. As pointed out
by Truell et al. (1969), "ordinary bonding techniques do not necessarily
provide sufficiently good control over paralleiness” (p. 120). Further-
more, the effect of nonparallielism of sample faces is almost impossible
to differentiate from the effect due to lack of parallelism between the
crystal and the sample faces. Secondly, to wring the crystal on the
surface is a very efficient way to damp the crystal and avoid the "ring-
ing" effect described by Krautkramer (1977). In this case the cohesive
force between the sample and the crystal allows the sample itself to act
as damping material. This negates the need for rubber backing, the
usual damping material, which causes a significant decrease of crystal

sensitivity.

b. Electrical circuit. The electrical signal from the decoupler

enters at the BNC connector of the main housing. It is then fed through

the central spring loaded retractable connector. This connector is in

]By applying the pressure at the rim of the crystal rather than
at the center, uneven loading of the crystal was avoided as well as
unnecessary loss of sensitivity to returning echoes.
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contact with a brass cylinder. This cylinder can move up and down
within the lucite cylinder housing which fits into the center of the
crystal housing ring. The cylinder is spring loaded by a central
connector, located inside the brass housing, so that it stays in con-
tact with the electrode attached to the surface of the crystal.

L The electrical

Two types of electrodes are used: gold and silver.
circuit is then completed by connecting the lower face of the crystai
to the brass housing. This is achieved by connecting the sample to the

brass housing using a brass connector.

3. Sample
The sample used is a plate of high carbon steel. This material

was selected for its known characteristics of: 1isotropy, low attenuation
coefficient from 2 to 5 MHz, electrical conductivity and machinability.
The plate geometry is necessary to eliminate side effects which can
easily be confused with nonparallelism effects as noted by Truell et al.
(1969), and to facilitate machinability of specified angles.

The plate was first ground to ensure parallelism of upper and
lower faces and to eliminate surface defects larger than 1 x 10'2 cm
(this represents about one-tenth of the wavelength at 6 MHz). The upper
plate was then ground in facets of approximately 3 cm in width. A
drawing showing the approximate geometry and the coordinate system used

is shown in Figure I111.4. The z direction corresponds approximately to

1A gold electrode was plated on the entire (1.27 cm-radius) crys-
tal surfaces. For the 7 MHz crystal only, a 1.14-cm partial aluminum
electrode was attached by a grease couplant which was squeezed as thin
as possible. Such partially-plated transducers have been studied by
Papadakis (1975).
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the propagation direction of the echoes, the y direction corresponds to
the width of the sample and the -x direction corresponds approximately
to the direction of lateral displacement of the propagating wave. As
we go along the x direction, we note an increase of the relative angle
between the upper facets and the lower face. This ra2lative wedge angle
(v) increases from 0 to 45 minutes by increments ranging from 20 seconds

to about 15 minutes. The width wn of the facets ranges from 3 to 5 cm.
C. EXPERIMENTAL PROCEDURE

1. Sample Characterization

2. Angles measurements. The angles between the lower face and

each facet is evaluated by using a collimator and two reflectors as
shown in Figure III.5. The collimator and the first reflector are
positioned such that the cross hairs' image coming from the lower face
reflector is coincident with the micrometer cross hairs. The micrometer
cross hairs' position is noted. The second reflector is now positioned
at the edge of the facet of the upper face to be measured and the
micrometer cross hair positioned to be coincident with the image from
this upper face reflector. Since both reflectors have parallel and flat
faces and have one or part of one of their faces wrung onto the sample,
the wedge angle (y) between both faces is given by:

-1

sin Ax/f

Y:

g
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Collimator

Upper Face
Reflector

—— — - -

Lower Face Reflector

Figure I11.5. Schematic of Optical Measurement Setup.
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where
y = wedge angle;

f 1

focal length  of the collimator = 33.23 mm;

&x = distance between the two image positions along the x axis.
The distance Ln is the sample length measured between the lower
end and the upper facet n. Four measurements were made at each facet:
Y, at both edges of the sample (y = 0 cm and y = 10.5 cm) and L, at
about 3 cm from either edge of the sample (y = 3 cmandy = 7 cm). The
position of y for measurements of L,, correspond approximately to the
position of the center of the transducer. The result of these measure-

ments 1s shown in Table III.1.

b. Velocity measurement. The measurement of velocity is made

by using a method analogous to the long pulse technique described by

McSkimin (1950). First, the facet used for measurements is thoroughly2
cleaned with acetone. The crystal is then positioned at the center of
this facet on a drop of coup]ant3 squeezed between the crystal and the

sample to ensure a good mechanical coupling. The transducer housing

]The value of f, the focal length, was measured using the
Newtonian method described by Palmer ?1969).

2The cleaning is extremely important, as it prevents lack of
parallelism or bad coupling due to the presence of dust particles.

3After many trials, nonaq stopcock grease was selected as
couplant. Its chief advantage is that when pressure was applied, an
even and very thin layer of couplant was formed. This permitted to
wring the crystal very easily on the sample and the ultrasonic trans-
missfon properties of this coupling were excellent. Another advantage
is that the crystal could afterwards be easily removed by sliding it to
the edge of the sample.
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TABLE III.1
SAMPLE GEOMETRY DATA?

Yn (mﬂ'l'irad'ians)B by (cm.)¢
n y = 0.0 cm y = 10.0 cm y=3.0cm y=7.0 cm
1 0.14 0.14 2.4845 2.4845
2 0.1 0.19 2.4855 2.4855
3 0.00 0.00 2.4856 2.4865
4 0.27 0.16 2.4860 2.4865
5 0.28 0.00 2.4860 2.4865
6 1.60 1.62 2.4845 2.4850
7 3.82 3.87 2.4773 2.4775
8 8.75 8.07 2.4563 2.4570
9 11.64 11.75 2.4243 2.4280

%The variations of Yn and L, observed along the y direction were
caused by machining problems.

bAccuracy of the measurements, *+ 3 x ‘IO'2 milliradians.

cAccuracy of the measurements, + 5 x 'IO'5 cm.
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is then mounted on the crystal and the pressure slowly increased by
tightening the vise. During this operation thg RF pulse rather than the
boxcar integrator gate position is monitored on the oscilloscope. (This
connection is shown as a dotted line on tie block diagram of Figure III-1,
p. 37.) When the RF1 and rectified pattern, as seen on the oscilloscope,
show no signs of distortion and when increasing the pressure does not
improve the pattern, the boxcar integrator gate position indicator out-
put is reconnected to the oscilloscope. At this point the transducer
setup is complete and the measurement procedure is started.

The exact fundamental frequency of the crystal is first evaluated
by changing the frequency on the VFO until minimum attenuation of the
last echoes is observed. The frequency is then read on the frequency
counter. The length of the pulse is increased until overlap of success-
ive echoes occurs. The frequency of the VFO is then changed by about
1 MHz on either side of the crystal fundamental frequency (fo). As the
frequency changes, interference minima and maﬂima are observed. The
gate of the boxcar integrator is positioned at the overiap of the
second and the third echo. The number of minima between the highest and
the lowest frequency is then noted and the values of these two fre-

quencies are read from the frequency counter. The velocity v is given

by:

v=2x L x aAf

]For the velocity measurements the RF was set at 4 MHz which was
approximately the fundamental frequency of the crystal used for
measurements.
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i where L is the sample length and Af is the change in frequency between
two "in phase" conditions of the second and third echo. To improve the
accuracy of the velocity value 21 sets of measurements of about 15

minima each are taken. The average velocity (V) obtained is 0.5840 cm/
usec with a standard deviation of 0.5%. An approximate calculation of
the effect of the phase change caused by the relative magnitude of the
crystal and the sample mechanical impedance is shown in Appendix C.

The result is that this correction in this case is negligible.

! 2. Attenuation Measurements

i The procedure used for attenuation measurements is the same as
the one used for velocity measurement up to and including the fundamental
frequency determination. The range of usable frequency is 3 to 9 MHz.
The frequencies used are all higher than 3 MHz to eliminate two problems.
First, an impedance mismatch between the pulser and the transducer

(this mismatch is an inverse function of the frequency); and second, an
increasingly difficult mechanical coupling of the crystal to the sample,
as the thickness of the crystal is increased. No frequencies higher

than 9 MHz can be used as the increase of attenuation of the ultrasonic

wave in the sample prevented measurement of a sufficiently large number
of echoes.

Once the resonant frequency is defined, the pulse parameters are
adjusted to give pulses and echoes with minimum distortion (flat top)
and which show no sign of interfering with each other. The width of the
gate is then set so that it could cover only the flat top part of any

echo. The first echo is then set at a given reference level
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(2 or 5 volts) and all the other echoes' amplitude measured by the
boxcar integrator. The reference setting is checked regularly to
ensure the validity of the relative amplitude measurements. The trans-
ducer and the crystal are then removed and the measurement repeated on

another facet.
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CHAPTER IV

RESULTS AND CONCLUSIONS

A. EXPERIMENTAL RESULTS

1. The Amplitude Pattern

A series of amplitude measurements was made in accordance with
the procedure described in Chapter I111. These measurements were made
for 34 different combinations of four parameters: (1) frequency (f),
(2) wedge angle (v), (3) sample length (L), and (4) radius of the
piezoelectric element (a).

Figure IV-1 shows an example of exponential decay pattern
observed on the CRO. These patterns were observed when the wedge angle
was small enough and the frequency low enough. In other cases in which
the frequency was high enough and the wedge angle large enough signifi-
cant fluctuations about the exponential decay patterns were observed.

A photograph of one of these fluctuating amplitude decay patterns, as
seen on a CRO, is shown in Figure IV-2. A plot of such fluctuating

amplitudes is shown in Figure IV-3.

2. The Attenuation Parameter

The attenuation parameter a is the quantity that is modified in
the course of this study to bring it closer to the ultimate goal ay.
The parameter o is given by Eq. (2-6):

14
.20 0
o " A ‘°910(F!x5) :
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Figure IV-1. Exponential Decay Pattern at 6 MHz for 0 Wedge

Angle.
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Figure IV-2. Fluctuations in the Echo Pattern Observed at 3 MHz
for y = 11.75 x 10~3 Radians.
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Figure Jv-3. Pulse Amnlitude Pattern at 4 MHz for a Wedge Angle
of 11.75 x 10=° Radians.
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In our study we will use P0 as the amplitude of the first measured echo
and P(x) as the amplitude of the nth echo. Then ax, the propagation

path from echo 1 to echo n, is given by:
8x = (Rg)y = (Ro)y

where (RO)n is the_distance between the center of the receiver and the
source after n reflections and is given by Eq. (2-42). Values of a are
calculated by the computer program in Appendix B and are given by the
variable DBMP. When we use the uncorrected data, this parameter
represents the apparent attenuation. Some plots of apparent attenuation
versus n obtained at 4 MHz and 7 MHz for various wedge angles are

shown in Figures IV-4 and IV-5. The plots show that (1) the apparent
attenuation is a strong function of the wedge angle and the echo
number; (2) for higher frequency the attenuation parameter becomes
sensitive to smaller variations of wedge angle and echo number; and

(3) the echo trains exhibit both variations (monotonic increases) and

fluctuations (somewhat periodic changes).
B. THE DIFFRACTION CORRECTION

The diffraction correction defined by Eq. (2-21) can be applied
to amplitude values obtained on facets with zero wedge angles. A
corrected attenuation value can then be obtained by using these
corrected amplitude values in Eq. (2-6). This corrected attenuation
is evaluated by the computer program in Appendix B and is given by the
variable DBCD. A plot of both the apparent and corrected attenuation !

§
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Figure IV-4. Apparent Attenuation at 4 MHz for Different

Wedge Anagles.
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Figure IV-5. Apparent Attenuation at 7 MHz for Different
Wedge Angles.
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as a function of the echo number for data taken at 3.34 MHz is shown

in Figure IV-6. A similar plot for data taken at 6 MHz is shown in
Figure IV-7. The plots show that the corrected attenuation has a
smaller magnitude than the apparent attenuation. For the first two
echoes at 6 MHz and for the first six echoes at 3 MHz variations of
apparent attenuation are larger for smaller frequencies than for larger
frequencies in contrast with the effect of the change in wedge angle.
(The change in wedge angle resuited in larger variations for higher
frequencies.) These variations are corrected for by the diffraction
correction and a reference attenuation is plotted by taking the average
of these first few corrected echoes. Dotted lines giving the reference
attenuation are given in Figure IV-6 and succeeding figures.

Deviation of the data from the reference attenuation for the
later part of the echo train cannot be explained by this correction
model for two reasons. First, even though the approximations of the
model should be better and better as n increases (Rogers and Van Buren
(1974) report an accuracy of at least 0.6% in the Fresnel zone for the
range of values of ka used here), the deviation of the corrected
attenuation from the reference attenuation becomes larger and larger
as n increases. Second, in contrast with the prediction of this
correction model, th2 deviation of the attenuation data from the
reference attenuation is larger for high frequency than the deviation
of the data observed for low frequency. The possibility of having
inhomogeneity in the sample, which would give a pattern similar to non-
parallelism, was reported by Truell et al. (1969). However, we believe

that the quality of the sample is such that this possibility seems
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Figure IV-6. Attenuation at 3.34 MHz for 0 Wedge Angle. A
Reference Attenuation is Obtained by Averaging the First Six Echoes.
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Figure 1V-7. Attenuation at 6.00 MHz for O Wedge Angle.
A Reference Attenuation is Obtained by Averaging the First Two Echoes.
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unlikely. However, this pattern is very similar to the results of
varying wedge angles. The accuracy of wedge angle measurements was

limited to 3 x 10™°

radians. If we now assume that a wedge angle of
2 x 10'5 radians is present here, then (from Eq. (2-22)) after three
reflections the incident angle of the wave on the receiver will have a
magnitude comparable to the smallest wedge angle in the sample. A con-
clusion which could then be drawn from the behavior of the later part
of the echo train is that, given enough reflections, the data seem to
be more sensitive to wedge angle variations than the optical measure-
ment method described in Chapter II.

These studies, then, allow us to make two important statements.
First, for extremely small angles the early part of the echo train
allows one to concliude that the diffraction correction is valid for up
to six echoes at frequencies as low as 3 MHz, and up to two echoes for
frequencies as high as 6 MHz. Second, the later part of the echo train
follows the behavior predicted for any wedged sample: Ypo the effective
incident angle of the receiver, increases at each reflection so that for

higher frequencies the smaller wavelength makes the deviation from an

exponential echo train more noticeable.
C. APPLICATION OF THE PLANE WAVE GEOMETRICAL CORRECTION

It is clear from Figures IV-4 and IV-5 that the magnitude of the
apparent attenuation is strongly influenced by the value of wedge angle.
Since the diffraction correction does not take into account the change

in wedge angle, an attempt is made to solve this problem by the use of

the Truell and Oates correction function H(yn) given in Eq. (2-27).
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The amplitude values are first corrected for diffraction. From these
values, a diffraction corrected attenuation (given by DBCD in

Appendix B) is obtained. Then the diffraction corrected amplitude

values are recorrected by using the Truell and Oates correction

function. The attenuation obtained from these recorrected values (given
by DBCPG in Appendix B) will be referred to as attenuation corrected

for plane wave geometry. The plane wave correction model is now applied
to fluctuating patterns such as the one shown in Figure IV-3 (p. 55).

The diffraction corrected attenuation as well as the attenuation
corrected for plane wave geometry are shown in Figure IV-8. As can be
seen from these plots when the fluctuations of attenuation values are
fairly large, as long as the propagation path is less than 2 Zf. the
plane wave model corrects in the right direction. However, in these
cases it significantly overcompensates for the fluctuations. Examination
of the data reveals that this model improves the prediction of the

shape of the fluctuations as we get closer to the Fresnel zone or,
equivalently, as the pressure distribution on the receiver approaches

the plane wave model. This correction was applied to different combi-
nations of frequency and wedge angle and in most cases it overcompensated

for large wedge angles and undercompensated for small wedge angles.

Calder showed that his correction was quantitatively
inappropriate for his measurements in solid helium. The results pre-
sented above agree with Calder. Even though the Truell and Oates model
gfves the approximate shape of the observed fluctuations, it fs not

possible to use it for quantitative corrections in our case.
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Figure 1V-8. Attenuation at 4 MHz for a Wedge Angle of

11.75 x 10-3 Radians Using the Truell and Oates Correction.
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D. APPLICATION OF THE DIFFRACTED WAVE
GEOMETRICAL CORRECTION

The diffracted wave geometrical correction is now applied to the
uncorrected farfield data and the values of a(n) (given by the variable
DBCDG in Appendi- B) versus n are plotted. For comparison in the far-
field and to allow for partial correction in the Fresnel zone, the
diffraction correction also is given.

Such corrections to the data shown in Figure IV-3 (p. 55) are
plotted in Figure IV-9. The diffracted wave geometrical correction
brings the values much closer to the values observed for smaller
wedge angles in Figure IV-4 (p. 57). In Figure IV-9 cne observes that
the correction gives more consistent results than the two previous
corrections and brings the corrected values closer to the values
obtained for smaller wedge angles in the region in which fluctuations
occur. For some specific combinations of relatively large frequency
and wedge angles, such as the one shown in Figure IV-10 for data taken
at 5.75 MHz, this geometrical correction successfully corrects the
apparent attenuation such that the corrected attenuation closely
approximates the reference attenuation value obtained for zero wedge
angle at approximately 6 MHz. In general, for the frequenciés in
the 4 to 6 MHz range and wedge angles smallerAthan 3.82 x 10'3 radians,
the correction brought at least the first one or two echoes of the far-
field into the range predicted from the reference attenuation obtained
for smaller wedge angles.

In Figure IV-11 a plot of the corrected data at 3.13 MHz for a
wedge angle of 3.82 x 10°3 are shown. As can be seen from the plot,
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Figure IV-9. Attenuation at 4 MHz for a Wedge Angle of
11.75 x 10-3 Radians Using Data Corrected /or Diffracted Wave Geometry.
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Figgre IV-10. Attenuation at 5.75 MHz for a Wedge Angle of
3.82 x 10-3 Radians Using Data Corrected for Diffracted Wave Geometry

and Reference Attenuatfion for vy = 0 and f = 6 MHz.
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Figgre IV-11. Attenuation at 3.13 MHz for a Wedge Angle of
3.82 x 10~ Radians Using Data Corrected for Diffracted Wave Geometry
and Reference Attenuation for y = 0 and f = 3.34 MHz.
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the corrected reference attenuation, at least for the first few echoes,
gives a close approximation of the reference attenuation line. The
correction also was applied at 4 MHz to angles of 3.82 «x 10'3 radians
or smaller and in all cases the corrected values of the first one to
three echoes were within 5% of the reference attenuation obtained at
lower wedge angles.

In summary, the important points are that (1) for frequencies
nigher than 4 MHz this model corrects partially for the deviation from
the reference attenuation when the type of fluctuations shown in
Figure IV-9 do not occur, i.e., for relatively low wedge angles; and
(2) if the frequency is 4 MHz or lower, then our model successfully
corrects for geometrical attenuation (at least for the first few

echoes) even for wedge angles as large as 3.82 x 10'3 radians.
E. CONCLUSIONS

From the analysis of the data reported here two main conclusions
seem to emerge. A

1. The large fluctuations and variations observed when either
the wedge angles or the echo number were large enough or the frequency
high enough, cannot be explained entirely on the basis of the diffraction
model used here. Even though the neglect of the beam displacement
and of the actual pressure distribution seems to invalidate the
Truell and Oates plane wave model in our situation, the results show
that the Truell and Oates function H(yn) does, in contrast with the

other corrections, take into account the form of the large variations
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and fluctuations at least when the shape of the wavefrent approaches the
plane wave approximation.

Kinsler et al. (1982) gave a description of similar fluctuations
and variations. They attribute these fluctuations and variations to
a receiver directivity factor Hr(ei)’ where 8, is the incident angle
of the wave on the transducer. According to Kinsler, the receiver
directivity factor Hr(ei) is given by the magnitude of the
directivity function H(s) of the receiver when used as a transmitter.

A mathematical justification of this statement is shown in Appendix D.
Then if a plane wave is impinging on a receiver Hr(ei) will be given by
the magnitude of the directivity function of a piston source. [f we now
take the magnitude of the directivity function of a piston source given
in Eq. (2-20) we obtain the Truell and Oates function H(yn) given in

Eq. (2-26) since Yn gives the magnitude of 8- Then in our case the
value of the Truell and Oates function seems to reside in the fact that
it has exactly the same form as the receiver directivity function for a
plane wave impinging on a circular receiver.

We are then led to the conclusion that when the wedge angle or the
echo number is large enough or the frequency high enough, hoth the
geometrical attenuation and the receiver directivity significantly
affect the measured attenuation. And, in our case, the model of the
receiver directivity factor based on the plane wave assumption can only
be used in a qualitative manner. The important point, however, is that
the model of the receiver directivity factor gives a plausible physical
explanation of the large fluctuations and monotonic variations observed

in the echo train.




b = -

aonil G OCDE GEN N ) 0 RN ey My

L o i lps s S e o B TEL GNP ol ittt AU 50 + ot 0 = e I # = TN o £

n

2. From the analysis of our data it appears that a geometrical
correction should be applied to all the amplitude measurements made on
wedged samples when the intrinsic attenuation is desired. Only
the cases when the wedge anale is so small that it cannot be detected by
a method of accuracy comparable to the one used here, is it sufficient,
at least for frequencies lower than 6 MHz and for the first few echoes,
to use the diif{raction correction for parallel faces as geometrical
correction. In all the other cases the diffracted wave geometrical
correction should be used.

In some cases the geometrical correction is the most significant
correction and the receiver directivity factor can be neglected. These
are characterized by the fact that the values of amplitude corrected
for geometrical attenuation gives an approximately constant intrinsic
attenuation. In our experiments they occurred mainly at frequencies

lower than 4 MHz and for wedge angles smaller than 3.82 x 10'3 radians.
F. SUGGESTIONS FOR FURTHER WORK

1. Receiver Directivity Factor

Probably the most significant improvement to the correction for
nonparallelism would be the definition of a receiver directivity factor
which could be applied to cases for which the plane wave assumption is
not satisfied. As a secondary investigation, a calculation of the
directivity function in the farfield of a circular source having a
distribution of the form 2J,(r)/r was made. The results show that a
considerable decrease in the amount of overcompensation for the receiver

effects is obtained when this directivity function is used for
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correction. Further investigation along this direction probably would

be fruitful.

2. Correction in the Fresnel Zone

A very useful improvement of the diffracted wave geometrical
correction would be to extend its validity farther into the Fresnel zone.
This would allow for correction in a region which is commonly
erncountered in nondestructive testing situations. The mathematical
difficulty associated with this improvement is a long-standing impediment

to solution of all diffraction problems.

3. The Gaussian Transducer Model

During the course of this investigation it became clear that an
analytical solution based on a radiating element with a diffraction
field showing radial symmetry would be difficult to handle. This is the
reason a numerical solution was used. An experimental configuration
which would lend itself to the use of cartesian coordinates would be
much simpler to model mathematically. The Gaussian transd.cer developed
by Martin and Breazeale (1971) has this characteristic.

A theoretical solution of the problem of evaluating the diffraction
field of a Gaussian transducer is included in Appendix E. Experiments

modeled on this solution would be very interesting.

4. Velocity Measurements

As can be seen from Figures 11-9 and II-10 (pp. 26 and 29), if
the wedge angle or the sample length is large enough significant

variations in the measurements of velocity will occur because of the
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variations in the propagation path between echoes. Preliminary results
obtained in large steel blocks {20 cm) with large wedge angles (1 to 2°)
at a frequency of about 5 MHz showed that significant decreases (up to
5%) can be observed in the transit time between two successive echoes.
A study of the var{ation of velocity measurements in wedged samples

promises to be an interesting field of investigation.
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APPENDIX A
AN APPLICATION OF THE RECIPROCITY THEOREM
A. THE RECIPROCITY THEOREM

Let us assume two identical transducers 1 and 2. Let a volume V
with closed surface S bound these two sources but not enclose them, as

shown in Figure A-1. % is the velocity potential for transducer 1

and .2 for transducer 2. If we excite transducer 1 only, the description

of the oropagation of the wave in volume V is given by:
-
' v2¢] = -K2¢] (A-1)

and the particle velocity 31 = V¢, and the pressure Py = -juppdy.
Similarly, if we now excite transducer 2 only at the same frequency w,

- we have:

.. V2¢2 = -K2¢2 (A'Z)

| and again, ﬁz = Vo, and P, = Jupp,.

From Green's theorem:

§s (61765 = ¢,9¢;) - 0 dS = [v (¢,v2¢2 - 4,7%07)dV . (A-3)

» + A 2 2

78

1
|
l’ Substituting (A-1) and (A-2) in (A-3) we have:
I
I
|

——
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Figure A-1. Theoretical Position of Two Transducers Enclosed in
a Volume V.
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The right hand side of (A-5) vanishes identically and we have:
-> > ~
§S (P1 u2 - Pz u'l) + ndsS = 0 .

This is the expression of the principle of reciprocity. Let us now
restrict this theorem to the situation where the closed surface is made
of an infinite rigid baffle of surface Sy such that (d-n) = 0 on Sg-
Then the only surface allowed to react to the pressure waves are the
two transducer surfaces Sl and SZ' Then, (A-5) becomes:

f(s]+52)(91 Uy - Py Uy) < Ads =0 (A-6)

or equivalently,

- ~ -> - -> -~ -> ~
2 2 1 1

(AR-7)
Since the original assumption is that one transducer is passive while
the other is active, then wh=n one transducer is active the pressure
over the surface of the second transducer is not zero but the velocity
over that surface is zero. This means that the negative terms of

Eq. (A-7) go to zero giving:

Isz P, az.ﬁdssfs pzﬁl-ﬁds. (A-8)

B i U ¢
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B. SMALL SOURCES IDENTITY

If the two sources 1 and 2 are small with respect to the
wavelength and located several wavelengths apart such that the pressure
is uniform over each source, then (A-8) when time is considered can be

expressed as:

uy(t) - nds = F}%fT Js ﬁz(t) e nds. (A-9)

1 2

We now define the rate at which the volume, in the vicinity of

the source, is displaced in function of the source strength Q as:

q edvt - [s u(t) - nds. (A-10)
Using the fact that the variation of P is given by P](t) = Py edot ang
Eq. (A-10), we obtain from Eq. (A-9) that
4 &%
=L, (A-11)
22

Therefore the ratio of source strength to pressure for a small source

{s independent of the shape of the source.

— b
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APPENDIX B

A COMPUTER PROGRAM FOR CORRECTING ULTRASONIC
ATTENUATION DATA

THES PROGRAM IS CODED IN FIRTRAN1O LANGUAGE.

IT CORRECTS AMPLITUDE VALUES OBTAINED IN A WEDGED
SAMPLE WIT4 A CIRCULAR ULTRASONIC TRANSDUCER,

IT ALSO CALCULATES THE CORRECTED ATTENUATION
BETWEEN EC40 1 AND N (NL15)

THE INPUT VARIABLES ARE:

V: VELOCITY OF THE WAVE IN THE SAMPLE (CM/USEC)
F: FREQUENTY (MHZ)

D: DIAMETER OF THE PIEZOELECTRIC ELEMENT (CH)
SL: SAMPLE LENGHT (CM)

GAMMA: WEDGE ANGLE {RADIANS)

THE QUTPUT VARIABLES ARE:

AXXX: AMPLI TUDE
DB Xxx: ATTENUATION (DECIBELS/CM)
WHERE XXX MEANS:
MP: UNCNYRECTED
CD: DJ IACTION CDRRECTED
CD3: CORRECTED FOR DIFFRACTED WAVE GEOMETRY
CP5: CORRECTED FOR PLANE WAVE GEOMETRY

IMPLICIT DJUBLE PRECISION (M)

DIMENSION AMP(15) ,ACDI15),ACPG(15 ), ACDG(15)
DIMENSION XMP(15) 4,RCD(15) RCPG(15),RCDGI15)
DIMENSION RC(15),2C(15)

COMMON Pl,AoSLyGAM2N WK ,OMEGA, ALAMBD, ECHOND
COMMON R0OJ,204 Sy SRF

Pl = 3,1415926

V = 5,8640E-1

READ (1,120) Fy DySLsGAMMA

A =D/2.

IF (F.GT.100.0}) sTOP

ALAMBD = V/F

OMEGA = 2,.%PI*f

WK = 2,5P[/ALAMBD

82
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WRITVE (5,130) A,SL,GAMNA,F

ICOUNT=]

READ (1+140) AMP{ICOUNT)

IF (AMP{IZDUNT).5T.100.0) GO TO 30
ICOUNT=ICOJNT+]

GO TO 20

N = ICOUNT-1

DO 90 I=]14N

ECHOINY = DSLOAT(I)

GAM2N = 2,0*GAMMA*ECHIND

IPAR = ECHONO*S1%2,0

S = (ZPAR*ALAMBD) /((A)%**2)

CALL DIFZOR (CD)

RDOO = 0.0

0 = ZIPAR

ACDUId=(AMPLI) )/ (CD)

CALL FLUCTJ(HGAM2N)

FARFLD = (D#*%2-AL AMBD%%*2)/( 4*AL AMBD)
IF{ZPAR.LT. {1 .0%FARFLD)) GD TO 60
CALL DSXZOR (CDG)

ACDGI(I) = AMP(I)/CDG

RC(I) = R3O l
Ity = 29

IF = SQRT(0O0*#2+70%%2) /FARFLD

IF (ZF.lLT.3.0) GO YO 70

G- YO 80

ACDG(I) = ACD(1I)
ACPG(T) = ACDG(I)/HGAM2N

RC(I) = 0.
ctr) = IPAR
6O 70 90

CONT INUE

WE NOW CORRECT THZ FARFIELD APPROXIMATION TO IMPROVE
1TS CONVERSENCE.

IF(ZF LT eleS)ICF={2F-1.)%0.6¢0.4

IFUZFeGT el e 5cANDZF ¢LT o2 JCF={2F-1.5)%0.4%0.7
IF(IFeGVe2s00ANDZF eLT 4 2.5)1CF={2F-2,)%J,14¢0.9
IF(ZIFGT e2.5)CF=(2F-2.5)%0.04+0.97

ACDG(I) = ACDGII)*CF

ACPG{I) = ACD(I)/HGAM2N

CONT INUE

WRITE (5,150)

DO 103 I = 14N

RMP(1) = AMP(I)/aMP(1)

RCO{1)= ACD{I)/ACD(1])

RCDG{1) = ACDG(I)/ACDG(1)

RCPG(I)= ACPGI(T)I/ACPGLL) '
X=SQRTIRC(! 1224201 [}*%2)-SQRTIRC 1) **242C(]) %*2)
HRITE (5,180) [,AMP(I)},ACD(1),ACOG(I),ACPGLI)

IF (1.EQ.1) GO Y0 100

|
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DBMP = 20,0*ALOGIOIRMP(I)})/X

DBCO = 27.0%ALOGLO(RCD(IN} /X

DBCDG = 20.0¢ALOGLO(RCDG(I)) /X

DBCPG = 20.0%ALOGL1O(RCPG(I)) /X

WRITE (5,170) DBMP,DBCD,DBCDG, BBLPG

CONTINUE

G0 70 10

RE TURN

sTop

FORMAT (3FB848XsEl11.3)

FORMAT (1HL1 ,4(1X,1PF13.5))

FORMAT ( F5)

FORMAT {1X,*THE RESULTS ARE GIVEN AS'/1X,*ECHD NUMBER
1 AMPY, 16Xy *ACD® ¢ 16Xy YACDG® 916X ACPG' /12X,
2 DBMP? 415X, *DBCD® 915X+ *DBLDG? 4 15X, *DBCPG?)
FORMAT (1H=-,"ECHO 1°¢1X4(1PE16.9))

FDRMAT (1H)8X,4{1PE16.9))

FORMAT (LH-4"ECHD *91241Xs4(1PE16.9))

END

SUBRJUTINE DIFCORILD)
THIS IS RIGERS AND VAN BUREN CORRECTION FOR DIFFRACTION

IMPLICIT DIUBLE PRECISION (M)
COMMIN PTosASLoGAMZN, WK s OMEGA, ALAMBD ,ECHOND
COMMON R0OJ ¢20¢SsSRF
MARG=2.*#PI/S
CALL THE IMSL FUNCTIONS
DJO = MMBSJO(MARG,IER)
DJ1 = MMBSJ1(MARG,IER)
CO =SARTL(COSIMARG)-DJD) %22+ (SINIMARG)~DJ1)*x2)
RETURN
END

SUBROUTINE FLUCTU (HGAM2N)
THIS IS TRJELL AND OATES FLUCTUATION CORRECTION

IMPLICIT DJUBLE PRECISION (M)
COMMON PI+A)SLyGAM2N,WKyOMEGAy ALAMBD,ECHOND

COMMON RJ0 420454 SRF

MARG = ABS{WKSA®S IN(GAM2N))

HGAM2N = 1,0

IF (MARG.LT .1.00~-8) GO Y0 10
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CALL THE IMSL FUNCTION MMBSJL
DJ1 = MMBSJ1{MARG,IER)

HGAM2N = ABS(2.0%DJ1/MARG)
CONT INUE

RETJRN

END

SUBROUTINE DSKCOR {(COG)

THIS IS THE DIFFRACTED WAVE GEOMETRY CORRECTION

IMPLICIT DIUBLE PRECISION (M)

COMMODN PI4AySLyGAM2N,WK,OMEGA, ALAMBD, ECHOND
COMMON RJ0,20, Sy SRF

EXTERNAL FARP,FARPD

ROO = ECHONO#SL*SIN{(GAM2N)

TAN = SINIGAM2N/2.)/COSIGAM2N/2,)

10 = 2,%ECHONO*SL-ROO*TAN

CALL THE IMSL NUMERJICAL INTEGRATION FUNCTION DBL INT
WHERE FARP AND FARPD DEFINE THF PRESSURE AT A
POINT (R,THEYA) LOCATED IN THE FARFIELD.

Rl = 0.0

R? = A

AERR = 1,0E-3

THETAl = 0.0

THETA2 = 2,%*P]

C=DBLINT (FARP,R1yR2,THETALl yTHETA2,AERR,ERROR,IER)
CO=DBL INT(FARPD4R14R2, THETA 1y THEY A2, AERRy ERRIR, [ER)
SRF = Pl%(A%%x2)

COG = SQRT((C/SRF)**2+(CD/SRF I*%2)

RETURN

END

REAL FUNCTION FARP (R,THETA)

IMPLICIT DJUBLE PRECISION (M)

COMMON Pl oA sSLoGAMZNWK,OMEGA, ALAMBD.ECHOND
COMMON RJ0,20, Sy SRF

RO = ABS(SQRT{((ROD+ReCOSI(THETAI*COS{GAM2N]
11#%2)+ (RESIN(THETA ) )*%2))

2 = 10 - RECOSITHETAIS®S IN(GAM2N)

DIR = ],

OROZ = SIRT(RO*%2+2%%2)

MARG = WK®A®RD/0R0OZ

DJ1 = MMBSJ L{MARG,IER)
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IF(MARG.GT.1.0~8)0IR=2.%DJ1/MARG

PAXI S=2¢SIN({PI/ALAMBD) & [SQRT(A#%2¢0R028#2)-IRDZ))
FARP = DIR®COS{WK*QROZ)*R#PAXIS

CONTINUE

RETURN

END

REAL FUNCTION FARPD (R.THETA)

IMPL ICIT DIUBLE PRECISION (M)

COMMON PIoA+SL+GAMZNHKoOMEGAy ALAMBD,ECHOND
COMMON RO0+20+ Sy SRF

RO = ABS(SQRT ({(ROO*R*COS{THETA)*LOS({GAM2N)
L1%#2)+(R*SINITHETA) J#%2)})

Z = 10 - RECOSITHETAI*SINIGAM2N)

ORGZ = SQRT (RO**2+72%%2)

DIRD = 1.

MARG = WK®A*RO/OROZ

DJ1 = MMBSJ1(MARG,IER)}

IF{MARG.GT. 1.0-8)DIRD=2.%DJ 1/MARG

PAXI S=2¢SIN{(PI/ALAMBD) *(S5QRT (A**2+DROZ**2)-IR]Z)})
FARPD = DID*SIN(WK*0R0QZ)*R*PAXIS

CONT INUE

RETJRN

END
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APPENDIX C
PHASE CORRECTION FOR VELOCITY MEASUREMENTS

As pointed out by many authors (McSkimin, 1950; Williams, 1958;
Papadakis, 1967; Truell, 1969), when a wave is reflected from an inter-
face a change of phase occurs. The phase shift is a function of the
relative velocity, and the mechanical impedance of the two materials in
contact at the interface as well as the frequency of the wave. This
means that we have to correct for two interfaces: the sample-
couplant interface and the couplant-crystal interface. However, as
mentioned by Williams (1958) and Papadakis (1967), the effect of fhe
bond material can be neglected when quartz crystals of frequency of
10 MHz or lower are wrung on the surface of a solid. Therefore, the
only interface of concern here is the crystal-sample interface. A
correction AT for the measured transit time T was given by Papadakis
(1967) for a single transducer pulse echo overlap method which is very
similar to the method used here. Neglecting the coupling layer, the

condition for overlap gives
T= 1/f0

where f0 is the resonance frequency and the correction for transit time

in the bond 1s
AT] x Y] /Zﬂf]

87
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where N is the phase shift given in radians for frequency f]. As
pointed out by Williams (1958), the factor y changes signs depending on
whether the frequency ¥ is higher or lower than the resonant frequency
fo. Furthermore, when the coupling layer is negligible, y is
proportional to the frequency. Therefore,'by dividing the correction
AT into two parts, one for frequencies higher than f, (ATG) and one for
frequencies lower than f, (ATL) and taking the average (A?) of both
(since about the same number of minima were observed on both sides of

fo), a good indication of the magnitude of AT can be obtained. That is:
AT = (ATL + ATH)IZ
where

and

1

Yy * +|2 tan” ' al

T -|2 tan°] al

where
Z
t
a = -z—s [tan Ot] .
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The factor z refers to the mechanical impedance and the indices
t and s refer respectively to the transducer piezoelectric materia]1

and the sample.2 The factor 0y is given by:
et =2xnmxfx zt/vt

where & is the crystal thickness and v the velocity of propagation of
the ultrasonic wave in the crystal.

Applying the correction, it was found that the time correction
ATL applied for the average low frequency fL of the 21 sets of
measurements was approximately -0.1%, whereas the correction of the
time due to the frequencies higher than the center frequency ATH, using
the average high frequency fH, was approximately +0.12%. The result
of these two corrections is that they almost exactly compensated for
each other and the average correction AT is about 50 times smaller than
the standard deviation of the measurement.

The values of the parameters used are listed in Table C-1.

The values of Zy, ¢, and v were obtained from Krautkramer
(1969).

zzs was obtained by evaluating the density pg of the sample and
using the equation zg = vg x pg where the previously uncorrected
velocity v was used as vg.

h iR
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TABLE C-1
PHASE CORRECTION DATA

f, = 4.550 MHz
f, = 3.580 MHz
fo = 4.003 MHz
zt/zS = 0.3200
2, = 0.07175 cm
Vg = 0.56984 cm/usec
v, = -.2040
vy = +.3038
T = 8.5042 usec
AT, = -9.069 x 10-3 usec
| aT,, = +10.626 x 10”3 usec
| aT = 7.783 x 10°% usec
[j AT/T = 0.009%
0 |
7 l
i
f
o l |
Y 3
1 |
.
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APPENDIX D
THE RECEIVER DIRECTIVITY MODEL

The magnitude of the mechanical deformation of the piezoelectric
element is dependent upon the distribution of the pressure vectors on the
receiver surface. If one assumes that an infinite plane wave is impinging
on the receiver, then the magnitude of the pressure deformation on the
receiver IPIr can be related to the average maximum pressure of the wave
5 by the use of a directivity function Hr(ei) where 8 is the incidence

angle:
[P, = P H(0;) . (D-1)

Kinsler et al. (1982) report different applications of the
directivity function and show mathematically that the reciprocity theorem
can be invoked to prove that the directivity factor of & receiver is
given by the magnitude of the directivity function of the same vibrating
element when used as a transmitter. A mathematical proof as applied to
a plane wave propagation in shown here.

We now assume the sources 1 and 2, described in Appendix A, to be
large compared to the wavelength and made of an active rigid piston

located in an infinite rigid baffle such that:
Usns=uy (D-2)

then Eq. (A-8) becomes
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» uy <(P)]> SZ (52) = Uy <(P)2> S] (S]) (D-3)

where <(P)i> Sj means the pressure P integrated on the surface S‘j when
only the transducer i is active. Furthermore, we will assume that: the
two transducer acoustic axes both make an angle & with the wave coming
from the other transducer; the distance R between the center

of the two transducers is large enough that Fraunhofer diffraction
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conditions exist; and the ratio :g-is so small that the wave originating
on Si appears plane when it reaches the transducer Sj. This is shown
in Figure D-1. The pressure felt on element 2 due to the source 1

[ <(P)]> Sz can be defined as a function of the bressure field of P]
called <P1(R’°)>Sz where 6 is the angle between the acoustic axes.

Since we have plane waves, then this pressure field is constant over

the surface 52' Then:
<P, (R,8)>c = P,(8) x A(R) (D-4)
1 S2 1
where A(R) is a pressure amplitude function. Similarly

<(P)2>S] = PZ(B) x A(R) . (D-5)
Replacing (D-4) and (D-5) in (D-3) gives

A(R) up Py(8) S = A(R) uy Py(e) S - (0-6)
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Figure D-1. Schematic Showing the Relative Position of the

Transducers S; and 5, and the Incident Angle & of the Incoming Plane
Wave.
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In Figure D-2 both acoustic axes of the two transducers are coincident,

then (D-6) transforms to:

A(R) u, P -
2 "Taxis A2 = AR) P2ais M - (D-7)

The magnitude of the ratio of (A-16) over (A-17) gives

Pl(e,t) P,(0,t)
Py . } i Pi { ' (0-8)
axis axis

If we now define a directivity factor Hi(e) as

P;(8)
li
axis

Hy(0) = : (0-9)

then replacing (A-18) in (A-19) we have
H1(e) = Hz(a) . (D-10)

Since this equation must be true independent of which transducer is a
transmitter and which is a receiver, and since both transducers are

jdentical, then we must conclude that the receiver directivity factor

H(e) 1s the same as the transmitter directivity factor.
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Figure D-2. Schematic Showing the Relation between Two
I] Transducers Sl and 52 which Have Parallel Acoustic Axes.




APPENDIX E
THE GAUSSIAN TRANSDUCER

Let us assume that a pressure disturbance has a Gaussian form
described by the relation:

2,.2
“P /To

P(p,0) = Py € (E-1)

where p is the radial coordinate of a cylindrical coordinate system
originating at the center of the source. T0 is the radius for which the
amplitude decreases to 1/e of its maximum value. Now, let this disturb-
ance propagate in a lossless fluid a distance z. Since the Fourier
transform of a Gaussian distribution is a Gaussian distribution the

pressure P(p,z) should have the form of Eq. (E-1).

ita)
P(p,2) = P(2) e (e-2)

Then from the principle of conservation of energy:

j;P(p,O) - j; Plo,2) (E-3)

or equivalently,

2
-o4/Ty? - 1ta)
X e[ p,e o (E-4)
0 0
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where Pz is the pressure on the axis of propagation at a distance z from

the origin. Equivalently then,

-ole%z)
re dp
0

o (E-5)
- = . £-5
P2 -pleo2
re
| 0
From Abramowitz (1972):
2,42
J“ e Ma =1 A2 . (E-6)
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Then replacing (E-6) in (E-5)

P
P Hz) (E-7)

0
From Haselberg and Krautkramer (1959):
P, = Py/e(2) (E-8)

- 2,2 1/2. Then replacing (E-8) in (E-7):
where ¢(z) [(zA/nT0 1©+ 1]

T(z) = o(2) 75 - (E-9) -
Replacing (E-9) and (E-8) in (E-2) we obtain:

2,2 2
Po  =p“/¢°(2)T '
P(o,2) = iy e 0 (E-10) | ?
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We now assume a plane wave propagation.] Then

2,207 2
Po_ P/ (2)T0" f(uteka)

Pbﬂﬂ)tn%e (E-11)

w the magnitude of the average pressure on the receiver is obtained by

integration of (E-11):

o 0iE@)Ty?
b 0 e -kz
[P(z)]| = el TR 6 e “ds . (E-12)

S

Following the same process described in Chapter 1I we will apply
this unidirectional wave propagation model to a multiply reflected wave.
We now assume that the dimension of the receiver in the y direction is
small enough that the amplitude does not vary significantly along the y

dimension of the receiver. Then Eq. (E-12) becomes:

-o(x)2/6%(2(x))T,?

- P
P(2)] = o2 ij e e~ Tkz(x) 4y (E-13)

where Ax is the length of the receiver electrode. Now we replace the
value of z(x) and p(x) by the coordinate system developed in Chapter 1I.

Then

2] - fg I ax/2 '(XCOS(Yn)'P(O:O)n)2/¢2(z(0.0)n*xsin(yn))
n X -Ax/2e

-1k(z(0.0)n+xsin(vn)z’x

1
* (20,07, + xstn(v,N® . (E-14)

1According to Hasers snd Krautkramer (1959) this introduces an

rg
error on P smaller than e-2/To where a is the radius of the pfezo-
electric element.
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We now approximate ¢(z(0,0)n + xsin(yn) by ‘p(z(o,o)n).'l Then (E-14)

becomes

- P ax/2 _ 2, .2 2
"“”*zrﬂﬁmmﬁLMnQX(ws““N(dmm”)

o~x(isinly,)-2c08 (1, )0 (0,000/¢7(2(0,0)n))

e~ (1k2(0,0)n40%(0,0)m) (E-15)

From Abramowitz (1972):

B2-AC

2 o
J o (AXC42Bx4C) _ 4 f% e "N erf(/ix + i%) : (E-16)

Then (E-15) becomes

e B~-AC

. P
IP(az)| = 0 e
2ax ¢(z2(0,0)n) VR

B ax/2
x erf(/A x + =) (E-17)
/A |-ax/2

where
A = cos?(y,)/9%(2(0,0),)

B =1 sin(y,) - 2cos(yn)o(O.O)n/¢2(Z(0.0)n
2

¢ = 1kz(0,0),, + 0%(0,0),, .

]This approximation for a steel sample, at a frequency of 4 MHz,
and for v = 7.45 x 10-3, was calculated to introduce an error of less
than 1.5% on the pressure value for n = 1 and the error decreases as n
increases.
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The circular piezoelectric element and the mechanical coupling
technique described in Chapter III are also used with the Gaussian
transducer. The main difference between the Gaussian transducer and the
previously described transducer is that now the source electrode is a
rectangular strip of aluminum wrung onto this piezoelectric element.

By positioning the circular piezoelectric element such that the
rectangular source electrode has its length normal to the slope of the
face it is then possible to use two smaller rectangular electrodes as
receiver by placing themoneither side of the source electrode such that
the pattern of electrodes looks like a cross. Then the displacement and
rotation of the propagating wave which occurs strictly in the 9626 plane

can be handled by means of the cartesian coordinates as described above.
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